
Ramsey Problem with Evolutionary Computation:
Exploring Useful Crossover Operators

Robert Heckendorn, PhD.
University of Idaho
Computer Science

PO Box 441010
Moscow, Idaho

heckendo@uidaho.edu

Damian A. Ball
University of Idaho
Computer Science

PO Box 441010
Moscow, Idaho

ball7126@vandals.uidaho.edu

ABSTRACT
Evolutionary computation has had significant success in em-
ploying techniques that can navigate rugged and compli-
cated solution terrain. Using the fundamental concepts be-
hind natural evolution and number theory, EC scientists
have revolutionized the way we search for the answers to
difficult problems. We aim to apply these same concepts
to yet another mathematical problem, Ramsey theory. By
introducing a set of useful crossover operators and by using
existing mathematical theory, we hope to create an EC ap-
plication that can handle this NP-complete problem. This
paper details the results of the operators we created.

General Terms
Ramsey theory

Keywords
Ramsey theory, evolutionary computing

1. INTRODUCTION
Ramsey theory is concerned with preserving characteris-

tics of integer sets as those sets are seperated into distinct
subsets, frequently called colors. More specifically, at what
set size n can we guarantee, regardless of how the set is
partitioned into some m subsets, certain characteristics will
always exist in their respective subset. In the case of Ram-
sey, the set is comprised of all the edges in a complete graph.
The characteristic we are preserving is a coloring of the edges
such that we can guarantee that either a single color com-
plete subgraph of size k1 exists, or a k2, or a k3, up to kn

exists in its respective subset of edges, where k1, k2, . . . , km

is a m-coloring of the graph. A common analogy for Ramsey
is the party problem, which asks the minimum number of
guests R(k, l) that must be invited such that at least k peo-
ple will know each other or at least l people will not know
each other. In this paper we are concerned with 2-colorings,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2009 ACM 1-xxxxx-xx-x/xx/xx ...$10.00.

for which a Ramsey number is defined as n = R(k, l). Ad-
ditionally, for the 2-coloring Ramsey problem, a complete
subgraph of size k is commonly refered to as a clique and l
as an anticlique.

Ramsey theory has application in a wide variety of Com-
puter Science and Mathematical subjects from communica-
tion complexity to computational geometry. Vera Rosta’s
paper [12] details recent advancements in Ramsey theory
and their applications as an addendum to the book of Gra-
ham, Rothschild and Spencer [3]. Solutions to Ramsey R(k, l)
are frequently used in bounds for equations on other color-
ing problems [12].

Many values for R(k, l) are still unknown. Stanislaw Radzis-
zowski in [11] has maintained a table of known 2-color Ram-
sey numbers. R(k, k) where k > 4 are still unknown. Bounds
on R(k, l) are usually found by either counter example or
theoretical proof. We believe that evolutionary computation
is a great framework to use for searching for lower bounds
on Ramsey numbers by evolving counter examples.

2. BACKGROUND
Ramsey theory has been approached from a number of

different perspectives over the past hundred years. Its NP-
complete nature means it is particularly difficult to solve,
yet recent advancements in computing have allowed scien-
tists to try EC techniques to find solutions. [2, 4] are current
methods that have been used to increase the bounds on cer-
tain Ramsey numbers.

Harri Haanpää’s paper [4] describes the use of tabu local
search on a random graph to find a new lower bound for
R(5,9). Haanpää also partitions the edges into sets which
have the same color. The edges are further partitioned into
sets based on the distance (dist(i, j)) of their endpoints.
Where dist(i, j) = min(|i− j|, n− |i− j|) and n is the num-
ber of nodes. Using this technique, Haanpää was able to
find 121 as the new lower bound for R(5,9).

In [2] Geoffrey Exoo uses tabu local search on random
graphs along with simulated annealing to help the search
settle as the algorithm approaches a solution. Exoo uses
circle colorings of Kn as constructions. A circle coloring is
where the color of an edge (i, j) is based on the result of
i − j. Exoo was able to improve 13 Ramsey bounds using
this method.

“Ramsey at home” [10] is a distributed computing project
started in 2008 to find new bounds on Ramsey numbers.
Their project narrative discusses using heuristics to help
decrease the computation time associated with calculating
Ramsey numbers. The distributed computation is used to
quickly calculate smaller known Ramsey numbers and use
the results to gain insight into their algorithms. The project
has just launched its production code for deployment May
14th 2009.

Techniques not employed by the above papers include
generic twoOp local search, computing on populations of
candidate solutions, and any crossover operators. Thus,
though local searching has been employed, we have not found
an instance in which a full evolutionary computation algo-
rithm was used to solve Ramsey numbers.

Creating effective crossover operators is key to the success
of any EC application. We believe that using graph the-
ory and other combinatorial mathematics related to Ram-
sey theory will allow us to create better crossover operators.
These operators will allow our EC application to search the
solution space more effectively and thus lead to solutions
faster than random or brute combinatorial search.

In our Ramsey EC application we represent our solutions
as edge matrices and store each candidate as an array of bit
strings. For efficiency, we primarily perform operations on
the upper triangular matrix and then adjust the lower to
match. Our bit string manipulation functions are built with
bitwise operators and are most efficient when running on a
64-bit processor. We have introduced three new operations
to the existing Ramsey EC application.

2.1 mergeAwayFrom
The first is a crossover called mergeAwayFrom which takes

two parents and produces a child whose edges are only modi-
fied if they are not shared by the two parents. This crossover
can best be thought of as creating a line segment between
the two parents and picking a point on the segment from
which to create the child.

2.2 twoOp Local Search
The second is a two operation (twoOp) swap mutation

operator. This is similar to many graph and EC problems
where an edge or series of edges is modified in hopes of
finding a better solution to the problem. This is also called
local search.

2.3 twoOp with Simulated Annealing
The third is a modification to the twoOp operator that

allows it to take swaps that produce worse fitness solutions.
This ability is helpful when the solution space of the problem
is rugged and can quickly lead a twoOp into a local minimum
or maximum.

3. METHODS
For our experiments, the command-line inputs into the

experiment program are our variables. We list the inputs in
Table 1. Our focus for this paper is on R(5, 5) which cur-
rently has a lower bound of 43. Thus, our number of nodes
variable is the same. Since we are interested in the subset of

Table 1: Experiment Variables
Variable Value(s)
numNodes 43
popSize 2, 8, 16
maxevals 1000000
xoverselection 0, 1, 2
xoverprob 0, 0.3, 0.7, 1
xoversize 2
mutateprob 2
mutatesize 2
subgraphprob 1.0
mutatesubgraphprob 1.0
mergeprob 2.0, 8.0, 16.0
twoopnumber 10, 50, 100, 200

our input that deals directly with each experiment, we have
kept other variables constant in addition to the number of
nodes. The total combinatorial value of all variable inputs
is listed in Table 2 by experiment. Experiment 1 did not
include the TwoOp number variable.

Table 2: Experiment Iterations
Experiment Combinatorial value

1 39
2 156
3 156

3.1 Variables
The variables used in our experiments are described as

follows: xoverselection indicates which xover operator to
use if using xover. xoverprob is the probability of perform-
ing a xover and is checked each selection-insertion iteration.
xoversize is used by the random xover operator to choose
the amount of the candidates to xover. mutateprob is the
probability of flipping a bit in the area selected for mutation.
mutatesize is the probability of selecting a bit from the re-
sult of the mutation and placing it into the new candidate.
subgraphprob is the probability of selecting a traditional
xover instead of a semi-bipartite xover. mutatesubgraphprob
is the probability of selecting a random mutation instead of
a semi-bipartite mutation. mergeprob determines how much
of the genetic material i, j do not share should be modified
in j to make the new candidate. Finally, twoopnumber is
the number of random edges in a candidate that are flipped
during each selection-insertion iteration.

3.2 Fitness
We evaluated our fitness based on two ideas. One, we want

to minimize our total number of cliques and anticliques. And
two, we want our clique and anticlique distribution to be
close to even. The following function places a greater weight
on lowering the total cliques and anticliques. Figure 1 is a
three-dimensional representation of the fitness function.

− [
(cliques − anticliques)2 + (cliques + anticliques)2

]

Figure 1: A three-dimensional graph of the fitness
function.

3.3 Selection
Selection of candidates for crossover or mutation is made

using the equation below. m is the probability of choosing
candidates of worse fitness and n is a random number. For
the purposes of our three experiments, m was kept constant
at 0.5, giving an equal chance for picking a better or worse
candidate for crossover or mutation.

popSize ∗ (((
√

m ∗ m + 4 ∗ (1 − m) ∗ n)−m)/(2 ∗ (1−m)))

0 ≤ m ≤ 1, 0 ≤ n ≤ 1

3.4 Insertion
Insertion was decided by fitness. If a new candidate was

more fit than any single candidate in the existing popula-
tion, then the new candidate was inserted into the popula-
tion and the worse candidate in the population was removed.

Each experiment was run 50 times in order to collect a
large enough sample size to deduce correlation. Some ex-
periments took three hours for each complete combinatorial
iteration. In order collect our results in a short period of
time, we distributed the computation over fourteen dual-
core machines. Results were calculated using standard de-
viation and variance to discover correlation between fitness
and the operators we are experimenting on.

4. EXPERIMENTS
In this paper we explore three different combinations of

crossover, local search, and random mutation. Each ex-
periment runs for 1,000,000 evaluations. An evaluation is
defined as an operation that calculates a portion or whole
of a member of the population. Reading from an already
calculated member variable is not considered an evaluation.
Since we are trying to minimize a negative fitness, our insert
function accepts fitness values that are less than the current
population. Each experiment follows this EC algorithm.

The algorithm:

initialize pop (population) randomly
for each x in pop

calculate fitness of popx

sort pop by fitness
loop (until solution is found or max evaluations is reached) :

set i, j = distinct random pop
if xoverprob ! = 0 then

if xoverselect == 1 then
xover of i, j

else
set i = mergeAwayFrom(j)

insert i, j into pop if fitness of i, j < some popx ∈ pop
else

set k = random mutation of i
insert k into pop if fitness of k < some popx ∈ pop

4.1 Crossover vs. Random Mutation
In this experiment we test the usefulness of our crossover

operators against random mutation. For the xover selection
variable, a value of 0 = no xover and thus strictly random
mutation is used, 1 = random xover, 2 = mergeAwayFrom
xover.

4.2 Local Search
In experiment 2 we introduce a new sub-algorithm to the

existing algorithm. Every loop iteration we choose a number
of edges to swap and randomly check to see if swapping them
produces a population member with better fitness. We keep
each swap if and only if it produces a better result.

4.3 Local Search with Simulated Annealing
In experiment 3 we introduce yet another sub-algorithm.

In this case, every twoOp swap is evaluated against a sim-
ulated annealing function [8]. If the fitness is better, the
option is always taken. In some cases however; if the solu-
tion is not better, the swap will still be kept. In order to use
a simulated annealing function we introduced a temperature
variable. The cooling schedule is built to exponentially re-
duce the temperature as the number of evaluations increases.
Here is the simulated annealing function:

eΔD/T > R(0, 1)

Where ΔD is the change of fitness, T is the current temper-
ature, and R(0, 1) is a random number from 0 to 1.

5. RESULTS

5.1 Experiment 1
The data we collected for experiment 1 indicates that our

crossover operators are offering little to no benefit. Table
3 is an analysis of the fitness of our results. It highlights
the variables which seem to directly affect our fitness. Since
our fitness is negative and we are trying to minimize it, the
mean fitness values start from numbers closest to zero. It is
clear that the random mutation operator received the best
fitness for all three population sizes. And thus, we need to
rethink our crossover operators.

Table 3: Experiment 1 Results
pop xover mean stddev

selection
16 0 -46097 6343.884
8 0 -49262.68 6548.573
2 0 -54936.571 6542.905
16 1 -344657.04 419980.515
16 2 -357219.293 445502.795
8 1 -456636.6 590284.113
8 2 -478538.858 621571.261
2 2 -743790.259 1128622.605
2 1 -760415.306 1156801.849

5.2 Experiment 2
Based on our results from experiment 2, listed in Table 4,

the twoOp operator is promising. While the improvement
isn’t drastic, it seems that the local search operation does
better our fitness. It also appears that a larger population is
still preferred along with the newly introduced twoOp eval-
uations variable. In opposition to experiment 1, xover selec-
tion doesn’t seem to play as important a role. The removed
data for Table 4 follows the trend of the data shown.

Table 4: Experiment 2 Results
pop xover twoOp mean stddev

selection number
16 2 200 -43291.551 5205.931
16 0 200 -43648.455 5590.61
16 1 200 -44204.485 5295.836
8 0 100 -44932 5575.032
8 0 200 -44953.5 4300.952
16 0 50 -45050.273 5082.534
8 2 200 -45301.379 5542.678
16 2 100 -45792.288 5807.845
...

...
...

...
...

2 0 50 -52239.364 7160.235
8 1 10 -52526.439 7772.861
2 2 50 -52662.576 6933.963
2 0 10 -53652.955 6575.955
2 1 10 -54577.879 7620.191
2 2 10 -54953.404 6992.495

5.3 Experiment 3
Experiment 3 has the best improvement so far. Results

are listed in Table 5. Much like experiment 2, population size
and twoOp evaluations are the most influential variable on
the fitness of our population. In comparison to experiment
1, we have smaller means and tighter standard deviations.
We believe that this indicates an improvement in our local
search operation. The removed data for Table 5 follows the
trend of the data shown.

6. CONCLUSION
Based on data collected from our three experiments, we

have concluded that more time and consideration should be
given to our crossover operators. One of the defining charac-
teristics of an evolutionary computation application, besides

Table 5: Experiment 3 Results
pop xover twoOp mean stddev

selection number
16 2 200 -37974.476 4103.408
8 0 200 -38225.2 3985.09
8 2 200 -38771.982 4296.216
16 1 200 -39568.773 4185.916
16 0 200 -39666 4188.648
2 2 200 -40174.284 4755.192
8 1 200 -40341.307 4453.905
16 0 100 -40678.44 5572.624
...

...
...

...
...

16 1 10 -48069.627 6509.895
8 2 10 -48474.916 6099.021
8 1 10 -49207.973 5875.225
2 0 10 -50553.56 6935.306
2 1 10 -50773.507 5629.405
2 2 10 -51090.609 6633.559

maintaining a population, is the crossover. Without it, we
would be relying solely on random initialization and random
change. Nevertheless, our local search operator was a suc-
cess, especially when we applied simulated annealing.

For each iteration of our EC application we kept track of
how many times we discarded a candidate. This number was
used to generate a good-bad ratio which indicated for how
many selection-insertion cycles our application spent gener-
ating unfit results. The iterations that solely used crossover
generated some of the worst good-bad ratios out of the entire
three experiments. Also, we made an indirect observation
on computation time while running our experiments which
has led us to strongly consider distributed computing for
our next experiments. Some thoughts on how to improve
our EC application are detailed in the next section.

7. FUTURE WORK
Throughout this semester we have been collecting a vari-

ety of ideas and papers that could help increase the efficiency
of our EC application and/or help it converge to a solution.
Those ideas range in subjects from evolutionary computa-
tion to graph theory. The few that look the most promising
are listed below:

7.1 Simulated Annealing on Insertion
Since we had marked success with adding simulated an-

nealing to our local search operation, there is a chance that
we could see overall improvements with our application if we
added simulated annealing to our insertion function. In this
case, candidates whose fitness was not better than the entire
population would still be allowed to enter the population on
occasion.

7.2 Age-layered Population Structure
Gregory Hornby published [6] at the Genetic and Evolu-

tionary Computation Conference in 2006. Hornby details a
structure that tags each candidate with an age and divides
the population into age-based layers. Candidates compete
for survival strictly within their respective layers and are
selected for breading in a similar restricted fashion. As the

candidate is used in crossover and mutation operations, its
age is increased. Candidates created from one or more par-
ents are given the initial age of the oldest parent. Every so
often, the candidates in the lowest age-layer, the layer re-
served for the youngest material, are randomized and given
an age of 0. It is worth noting that this is a framework to
help prevent premature convergence. It will not solve the
ineffective crossover problem that we currently face. How-
ever, this framework does help an EC application navigate
a rugged solution landscape.

7.3 Geometric Operators
In the paper [9], a geometric particle swarm optimization

algorithm is described as a means to improve on existing
particle swarm operators. A couple of paragraphs describe
operators that construct sudo physics for crossover of genetic
material. Considering geometric representations of our can-
didates and their genetic material could help us intelligently
move about the solution landscape. The paper also intro-
duces the notion of momentum of a candidate as it moves
away from its initial position. This is basically a memory
variable that the EC application can use during crossover.

7.4 Combinatorial and Graph Theory
Finally, [7, 1, 5] deserve particular attention because they

have directly contributed to the most recent lower bounds
on R(5, 5). Each paper describes combinatorial and graph
theory concepts which were used to construct new lower
bounds. Considering the math behind these papers could
lead us to change the fundamental underlying representa-
tion of our candidates along with our operators. We leave
these papers for future reading.

8. REFERENCES
[1] G. Exoo. A lower bound for r(5,5). Journal of Graph

Theory, 13(1):97–98, 1989.

[2] G. Exoo. Some new ramsey colorings. The Electronic
Journal of Combinatorics, 5(29):1–5, 1998.

[3] R. L. Graham, B. L. Rothschild, and J. H. Spencer.
Ramsey Theory. Joel Wiley and Sons, New York, 1990.

[4] H. Haanpää. A lower bound for a ramsey number,
2000.

[5] D. Hanson. Sum-free sets and ramsey numbers.
Discrete Mathematics, 14:57–61, 1976.

[6] G. S. Hornby. Alps: the age-layered population
structure for reducing the problem of premature
convergence. In GECCO ’06: Proceedings of the 8th
annual conference on Genetic and evolutionary
computation, pages 815–822, New York, NY, USA,
2006. ACM.

[7] R. Mathon. Lower bounds for ramsey numbers and
association schemes. Journal of Combinatorial Theory,
Series B, 42:122–127, 1987.

[8] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
and A. H. Teller. Equation of state calculations by fast
computing machines. The Journal of Chemical
Physics, 21:1087–1092, 1953.

[9] A. Moraglio and J. Togelius. Geometric particle
swarm optimization for the sudoku puzzle. In GECCO
’07: Proceedings of the 9th annual conference on
Genetic and evolutionary computation, pages 118–125,
New York, NY, USA, 2007. ACM.

[10] N. Peterson. A heuristic approach towards finding
ramsey numbers.
http://www.ramseyathome.com/ramsey/, 2008.

[11] S. P. Radziszowski. A dynamic survey of small ramsey
numbers. The Electronic Journal of Combinatorics,
1:1–60, 2006.

[12] V. Rosta. A dynamic survey of ramsey theory
applications. The Electronic Journal of
Combinatorics, 13:1–43, 2004.

